edexcel ㅃ̈ㅊ

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International GCSE Mathematics B (4MBO)
Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UG042104
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission
- awrt -answer which rounds to

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Question	Working		Answer	Mark	Notes	
1 (a)	$1.20 \times £ 1400-€ 1230$			2	M1	
			(€)450		A1	
(b)	$\begin{aligned} & " € 450 " \times \frac{75}{100} \\ & (=€ 337.50) \end{aligned}$	$\frac{" € 450}{1.2}(=£ 375.00)$		3	M1 oe	
	$\frac{" 337.50 "}{1.20}$	$\frac{75}{100} \times$ "375.00"			M1 dep	
			(£)281.25		A1	
						Total 5 marks

Q	Working	Answer	Mark	Notes	
4 (a)	$E C=\sqrt{(17)^{2}-5^{2}}$ Note: For a trig method, we need to see both stages for M to be earned i.e. $\sin \angle F E C=5 / 17$ followed by $E C=17 \times \cos (17.1046 \ldots)$		2	M1	
		$\begin{gathered} E C=16.2(\mathrm{~cm}) \\ (\mathrm{cao}) \end{gathered}$		A1	
(b)	$10 \times(10+7+F B)=" 16.2488^{\prime 2}$ OR $10 \times(B E)=" 16.248^{\prime 2}$		2	M1	
		Accept awrt $9.24,9.37 \rightarrow 9.41$		A1	
(c)	$7 \times$ "9.4" $=5 \times F A$ (o.e.)			M1	
		Accept awrt $12.9 \rightarrow 13.2$	2	A1	
					Total 6 marks

Question	Working		Answer	Mark	Notes
6 (a)	$\pi \times 20^{2} \times 10$			2	M1
	Note: isw		$4000 \pi\left(\mathrm{~cm}^{3}\right)$		A1 cao
(b)	Note: Allow a value substituted for π in this part.				
	$\text { Vol of spheres }=30 \times \frac{4}{3} \pi r^{3}$			6	M1
	Note: $40 \pi r^{3}$ could be implied by subsequent method marks [could even be implied by $40 r^{3}$ where π has been cancelled]		$=40 \pi r^{3}$		A1
	$\begin{aligned} & \text { Total volume }= \\ & \text { " } 4000 \pi \pi^{\prime \prime}+40 \pi r^{3 "} \\ & \left(12566.3 \ldots+125.663 r^{3}\right) \end{aligned}$	Increase in volume $=$ $\begin{gathered} 20^{2} \times \pi \times 6.4(2560 \pi) \\ (8042.47 \ldots) \end{gathered}$			M1
	$\begin{gathered} " 4000 \pi "+" 40 \pi r^{3 "} \\ =\pi \times 20^{2} \times 16.4 \\ (6560 \pi) \\ \hline \end{gathered}$	$\begin{gathered} " 40 \pi r^{3} "=20^{2} \times \pi \times 6.4 \\ (2560 \pi) \end{gathered}$			M1 dep
	$r^{3}=164-100$ (or better)				M1 dep
	OR				OR
	Vol of spheres + water $=20 \times 20 \times \pi \times 16.4$				(M1)
	6560π (20608.8...) Note: 26240π if $r=40$ used				(A1)
	6560 - - 4000π " (2560, $8042.47 \ldots)$				(M1)

	Volume of one sphere $=$ $\frac{" 2560 \pi "}{30}\left(\frac{256 \pi}{3}\right)$ OR $\frac{4}{3} \pi r^{3}=\frac{" 2560 \pi "}{30}\left(\frac{256 \pi}{3}\right)$	$40 \pi r^{3}=2560 \pi{ }^{\prime \prime}$		(M1 dep)	
	$r^{3}=64$			(M1 dep)	
	Note: Ignore -4 Ignore any prior unrounded value when the answer $r=4$ is given Note: Misread (using radius $=40$) loses at least the A mark in part (a) and the final A mark. All other marks (including the $2^{\text {nd }} \mathrm{A}$ mark, are available here.		$r=4$	A1 cao	
					Total 8 marks

Question	Working	Answer	Mark	Notes	
Penalise missing labels once only in the question, the first time it occurs					
8 (a)		A drawn and labelled	1	B1	
(b)	B has coordinates (3, 3), (3, 9), (7, 1)	B drawn and labelled	3	B3 -1eeoo	
(c)	C has coordinates (-3, -3), (-9, -3), (-1, -7)	C drawn and labelled	3	B3ft -1eeoo	
(d)	$\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right) "\left(\begin{array}{lll}-3 & -9 & -1 \\ -3 & -3 & -7\end{array}\right) "$		3	M1	
	D has coordinates $(3,-3),(3,-9),(7,-1)$ Note: If matrix product not seen, then it can be implied from a "correct" D.	D drawn and labelled		A2 -1eeoo	
(e)	Note: Must be consistent with their diagram Accept $y=0$ for x-axis	Reflection in x-axis	1	B1	
					Total 11 marks

Question	(a)	Answer	Mark	Notes
10 (a)(i)			4	B1
		$\overrightarrow{A B}=2 \mathrm{~b}-6 \mathrm{a}$ (o.e.)		
(ii)		$\overrightarrow{O P}=3 \mathbf{a}$		B1
(iii)	$6 \mathbf{a}+33(2 \mathbf{b}-6 \mathbf{a}) " \quad 2 \mathbf{b}+$ "2(2b-6a)"			M1
				A1
		$\overrightarrow{O C}=6 \mathbf{b}-12 \mathbf{a}$ (o.e.)		
(b)	$\overrightarrow{O Q}=\frac{1}{m} "(6 \mathbf{b}-12 \mathbf{a}) "$		3	M1
	$\overrightarrow{P Q}=\overrightarrow{P O}+\overrightarrow{O Q}=-" 3 \mathbf{a} "+\cdots \frac{1}{m}(6 \mathbf{b}-12 \mathbf{a}) "$			M1 dep
		$\overrightarrow{P Q}=\left(-3-\frac{12}{m}\right) \mathbf{a}+\left(\frac{6}{m}\right) \mathbf{b}$ OR Accept $-3 \mathbf{a}+\frac{1}{m}(6 \mathbf{b}-12 \mathbf{a})$		A1
(c)	$\begin{gathered} \Delta s \\ O A C \\ O P Q \end{gathered}$		3	M1
	$\frac{O P}{O A}=\frac{O Q}{O C}\left(=\frac{P Q}{A C}\right)=\frac{1}{m}=\frac{1}{2}$			M1
	OR			OR
	$\frac{"\left(-3-\frac{12}{m}\right) "}{"\left(\frac{6}{m}\right) "}={ }^{\prime} \frac{-6}{2} " \quad \text { (o.e.) }$ Note: could be in ratio form			(M1) oe
	$-6-\frac{24}{m}=-\frac{36}{m} \text { (o.e.) }$			(M1 dep)

	OR			OR	
	$\overrightarrow{P Q}="\left(-3-\frac{12}{m}\right) " \mathbf{a}+"\left(\frac{6}{m}\right) " \mathbf{b}=k \overrightarrow{A B}=k("-6 \mathbf{a}+2 \mathbf{b} ")$			(M1) oe	
	Equating coefficients of \mathbf{a} and \mathbf{b}			(M1 dep)	
	Note: Using $\overrightarrow{P Q}=\overrightarrow{A C}$ instead of being parallel goes nowhere and commonly arrives at $m=1$				
	Note: $m=2$, no incorrect working seen \Rightarrow full marks	$m=2$		A1	
(d)	Note: ft from (b) and/or (c) Does not need to be simplified	$\overrightarrow{P Q}=-9 \mathbf{a}+3 \mathbf{b}$	1	B1 ft	
(e)	Note: Using /seeing $\left(\frac{1}{" m "}\right)^{2}$ or $\left(\frac{1}{2}\right)^{2}$ Do not accept $m=1$	$\left(\frac{1}{" m "}\right)^{2}$ OR $\left(\frac{1}{2}\right)^{2}$	3	B1 ft	
	Area of $\triangle O P Q=\left(\frac{1}{" m "}\right)^{2} \times 12$			M1	
		Area of $P Q A C=9 \mathrm{~cm}^{2}$		A1	
					Total 14 marks

Question	Working ${ }^{\text {a }}$ Answer	Mark	Notes
11 (a)	-2.8 -4.6 Note: Accept awrt these values - do not penalise incorrect rounding in this question -0.4	3	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$
(b)	Notes: ft from their table values Accuracy: ± 1 small square If a point is not plotted, it can be inferred from their curve passing through (within tolerance) the required point.	3	B3 - 1 mark for straight line segments each point missed each missed segment each point not plotted each point incorrectly plotted tramlines very poor curve
(c)	$-5.5+/-1$ small square	1	B1 ft
(d)	Correct tangent drawn and attempting $\frac{\Delta y}{\Delta x}$ from curve Note: Tangent must touch curve at $x=3$. An attempt at $\frac{\Delta y}{\Delta x}$ seen. If this M not earned, then no A mark (i.e. calculus alone earns no marks)	2	M1
	accept gradient values in the range $3.8-4.4$		A1
(e)	$\frac{x^{3}}{6}-\frac{x}{4}+\frac{5}{x^{2}}-4=0 \Leftrightarrow \frac{x^{3}}{6}+\frac{5}{x^{2}}-8=\frac{x}{4}-4$ Note: The correct line identified (or drawn) earns method irrespective of working seen	4	M1

	Notes: Ignore missing label The line must pass through $(0,-4)$ and $(4,-3)$ (within tolerance) - extrapolate if necessary	drawn $y=\frac{x}{4}-4$		A1	
	Note: ft from the correct straight line and their curve (ignore values of y)	1.1+/-1 small square, $2.9+/-1$ small square		A1 $\mathrm{ft}\left(\mathrm{ft}\right.$ dep on $\left.1^{\text {st }} \mathrm{A} 1\right)$ A1 $\mathrm{ft}\left(\mathrm{ft}\right.$ dep on $\left.1^{\text {st }} \mathrm{A} 1\right)$	
(f)	$\frac{x^{3}}{6}+\frac{5}{x^{2}}-2=0$ rearranged as $\frac{x^{3}}{6}+\frac{5}{x^{2}}-8=-6$		3	M1	
		$\begin{gathered} y=-6 \text { drawn (or } \\ \text { implied) } \end{gathered}$		A1	
	OR			OR	
	statement that $y=\frac{x^{3}}{6}+\frac{5}{x^{2}}-2$ is obtained by moving $y=\frac{x^{3}}{6}+\frac{5}{x^{2}}-8 \quad 6$ units up the y-axis			(M1)	
	$\therefore y=\frac{x^{3}}{6}+\frac{5}{x^{2}}-2$ will not intersect the x-axis since m	imum is now $y=0.5$		(A1)	
	Note: " and therefore has no solutions" Final mark can only be awarded if the previous M and A are awarded.	correct conclusion drawn		A1	
					Total 16 marks

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

